Simple homogeneous ODE ====================== 1. ODE system ------------- .. code-block:: python import numpy as np from openmdao.api import ExplicitComponent class SimpleHomogeneousODESystem(ExplicitComponent): def initialize(self): self.metadata.declare('num_nodes', default=1, type_=int) self.metadata.declare('a', default=1., type_=(int, float)) def setup(self): num = self.metadata['num_nodes'] self.add_input('y', shape=(num, 1)) self.add_input('t', shape=num) self.add_output('dy_dt', shape=(num, 1)) self.declare_partials('dy_dt', 'y', val=self.metadata['a'] * np.eye(num)) self.eye = np.eye(num) def compute(self, inputs, outputs): outputs['dy_dt'] = self.metadata['a'] * inputs['y'] 2. ODEFunction -------------- .. code-block:: python import numpy as np from ozone.api import ODEFunction from ozone.tests.ode_function_library.simple_homogeneous_sys import SimpleHomogeneousODESystem class SimpleHomogeneousODEFunction(ODEFunction): def initialize(self, system_init_kwargs=None): self.set_system(SimpleHomogeneousODESystem, system_init_kwargs=system_init_kwargs) self.declare_state('y', 'dy_dt', targets='y') self.declare_time(targets='t') def get_test_parameters(self): t0 = 0. t1 = 1. initial_conditions = {'y': 1.} return initial_conditions, t0, t1 def get_exact_solution(self, initial_conditions, t0, t): a = 1.0 if 'a' not in self._system_init_kwargs else self._system_init_kwargs['a'] y0 = initial_conditions['y'] C = y0 / np.exp(a * t0) return {'y': C * np.exp(a * t)} 3. Run script and output ------------------------ .. code-block:: python import numpy as np import matplotlib.pyplot as plt from openmdao.api import Problem from ozone.api import ODEIntegrator from ozone.tests.ode_function_library.simple_homogeneous_func import \ SimpleHomogeneousODEFunction ode_function = SimpleHomogeneousODEFunction() t0 = 0. t1 = 1. initial_conditions = {'y': 1.} num = 100 times = np.linspace(t0, t1, num) method_name = 'RK4' formulation = 'solver-based' integrator = ODEIntegrator(ode_function, formulation, method_name, times=times, initial_conditions=initial_conditions, ) prob = Problem(integrator) prob.setup() prob.run_model() plt.plot(prob['times'], prob['state:y']) plt.xlabel('time (s)') plt.ylabel('y') plt.show() :: ================= integration_group ================= NL: NLBGS 0 ; 11.4891986 1 NL: NLBGS 1 ; 11.4891986 1 NL: NLBGS 2 ; 4.44981368 0.387304098 NL: NLBGS 3 ; 1.25362245 0.109113133 NL: NLBGS 4 ; 0.27640666 0.0240579584 NL: NLBGS 5 ; 0.0500058905 0.00435242635 NL: NLBGS 6 ; 0.00766683522 0.000667308097 NL: NLBGS 7 ; 0.00101969308 8.87523244e-05 NL: NLBGS 8 ; 0.00011973738 1.04217348e-05 NL: NLBGS 9 ; 1.258542e-05 1.09541322e-06 NL: NLBGS 10 ; 1.19721272e-06 1.04203327e-07 NL: NLBGS 11 ; 1.04007429e-07 9.052627e-09 NL: NLBGS 12 ; 8.31420102e-09 7.23653698e-10 NL: NLBGS 13 ; 6.15473577e-10 5.35697572e-11 NL: NLBGS 14 ; 4.24249932e-11 3.69259814e-12 NL: NLBGS 15 ; 2.73466584e-12 2.38020592e-13 NL: NLBGS Converged .. figure:: simple_homogeneous_TestCase_test_doc.png :scale: 80 % :align: center