Simple linear ODE ================= 1. ODE system ------------- .. code-block:: python import numpy as np from openmdao.api import ExplicitComponent class SimpleLinearODESystem(ExplicitComponent): def initialize(self): self.metadata.declare('num_nodes', default=1, type_=int) def setup(self): num = self.metadata['num_nodes'] self.add_input('y', shape=(num, 1)) self.add_input('t', shape=num) self.add_output('dy_dt', shape=(num, 1)) self.declare_partials('dy_dt', 'y', val=np.eye(num)) self.eye = np.eye(num) def compute(self, inputs, outputs): # True solution: e^t + sin(2*pi*t) two_pi_t = 2 * np.pi * inputs['t'] outputs['dy_dt'][:, 0] = inputs['y'][:, 0] + 2 * np.pi * np.cos(two_pi_t) - np.sin(two_pi_t) def compute_partials(self, inputs, partials): two_pi_t = 2 * np.pi * inputs['t'] partials['dy_dt', 't'] = self.eye \ * (-(2 * np.pi) ** 2 * np.sin(two_pi_t) - 2 * np.pi * np.cos(two_pi_t)) 2. ODEFunction -------------- .. code-block:: python import numpy as np from ozone.api import ODEFunction from ozone.tests.ode_function_library.simple_linear_sys import SimpleLinearODESystem class SimpleLinearODEFunction(ODEFunction): def initialize(self): self.set_system(SimpleLinearODESystem) self.declare_state('y', 'dy_dt', targets='y') self.declare_time(targets='t') def get_test_parameters(self): t0 = 0. t1 = 1. initial_conditions = {'y': 1.} return initial_conditions, t0, t1 def get_exact_solution(self, initial_conditions, t0, t): # True solution: C e^t + sin(2*pi*t) # outputs['dy_dt'] = inputs['y'] + 2 * np.pi * np.cos(two_pi_t) - np.sin(two_pi_t) y0 = initial_conditions['y'] C = (y0 - np.sin(2 * np.pi * t0)) / np.exp(t0) return {'y': C * np.exp(t) + np.sin(2 * np.pi * t)} 3. Run script and output ------------------------ .. code-block:: python import numpy as np import matplotlib.pyplot as plt from openmdao.api import Problem from ozone.api import ODEIntegrator from ozone.tests.ode_function_library.simple_linear_func import SimpleLinearODEFunction ode_function = SimpleLinearODEFunction() t0 = 0. t1 = 1. initial_conditions = {'y': 1.} num = 100 times = np.linspace(t0, t1, num) method_name = 'RK4' formulation = 'solver-based' integrator = ODEIntegrator(ode_function, formulation, method_name, times=times, initial_conditions=initial_conditions, ) prob = Problem(integrator) prob.setup() prob.run_model() plt.plot(prob['times'], prob['state:y']) plt.xlabel('time (s)') plt.ylabel('y') plt.show() :: ================= integration_group ================= NL: NLBGS 0 ; 90.2592287 1 NL: NLBGS 1 ; 12.4892941 0.138371381 NL: NLBGS 2 ; 5.40902531 0.0599276705 NL: NLBGS 3 ; 2.54497707 0.0281963086 NL: NLBGS 4 ; 0.783645137 0.0086821608 NL: NLBGS 5 ; 0.175877216 0.00194857876 NL: NLBGS 6 ; 0.0312245941 0.000345943506 NL: NLBGS 7 ; 0.00461052713 5.10809498e-05 NL: NLBGS 8 ; 0.00058493123 6.48056978e-06 NL: NLBGS 9 ; 6.52166781e-05 7.22548587e-07 NL: NLBGS 10 ; 6.49652087e-06 7.19762507e-08 NL: NLBGS 11 ; 5.85520053e-07 6.48709347e-09 NL: NLBGS 12 ; 4.82233488e-08 5.34276102e-10 NL: NLBGS 13 ; 3.65867769e-09 4.053522e-11 NL: NLBGS 14 ; 2.57417044e-10 2.85197478e-12 NL: NLBGS 15 ; 1.68904109e-11 1.87132231e-13 NL: NLBGS Converged .. figure:: simple_linear_TestCase_test_doc.png :scale: 80 % :align: center